Controlling the thickness of hollow polymeric microspheres prepared by electrohydrodynamic atomization.

نویسندگان

  • Ming-Wei Chang
  • Eleanor Stride
  • Mohan Edirisinghe
چکیده

In this study, the ability to control the shell thickness of hollow polymeric microspheres prepared using electrohydrodynamic processing at ambient temperature was investigated. Polymethylsilsesquioxane (PMSQ) was used as a model material for the microsphere shell encapsulating a core of liquid perfluorohexane (PFH). The microspheres were characterized by Fourier transform infrared spectroscopy and optical and electron microscopy, and the effects of the processing parameters (flow-rate ratio, polymer concentration and applied voltage) on the mean microsphere diameter (D) and shell thickness (t) were determined. It was found that the mean diameters of the hollow microspheres could be controlled in the range from 310 to 1000 nm while the corresponding mean shell thickness varied from 40 to 95 nm. The results indicate that the ratio D : t varied with polymer concentration, with the largest value of approximately 10 achieved with a solution containing 18 wt% of the polymer, while the smallest value (6.6) was obtained at 36 wt%. For polymer concentrations above 63 wt%, hollow microspheres could not be generated, but instead PMSQ fibres encapsulating PFH liquid were obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of macroporous SnO2 films using PMMA microspheres and their sensing properties to NOx and H2

Macroporous SnO2 (mp-SnO2(P-n); P means polymethylmethacrylate (PMMA) and n = diameter of PMMA microsphere) thick film gas sensors were fabricated by a modified sol-gel method by employing PMMA microspheres (n = 800, 400, 250 and 150 nm) as a template and SnCl2 as a tin source. Morphology of mp-SnO2 films was markedly dependent on the SnCl2 concentration and the diameter of PMMA microspheres. E...

متن کامل

Core/shell microencapsulation of indomethacin/paracetamol by co-axial electrohydrodynamic atomization

• Oral drug delivery systems were prepared by single step co-axial electrohydrodynamic atomization with high processing yield. • Polymer carrier systems (PCS) suitable for the process and drugs were developed first. • Model drugs of different aqueous solubility were successfully incorporated in the PCS with 50-70% encapsulation efficiency. • This technique is a versatile platform for combined d...

متن کامل

Controllable microfluidic production of gas-in-oil-in-water emulsions for hollow microspheres with thin polymer shells.

Here we developed a simple and novel one-step approach to produce G/O/W emulsions with high gas volume fractions in a capillary microfluidic device. The thickness of the oil layer can be controlled easily by tuning the flow rates. We successfully used the G/O/W emulsions to prepared hollow microspheres with thin polymer shells.

متن کامل

CHARACTERIZATION OF MICRO/NANO POROUS HOLLOW GLASS MICROSPHERES FABRICATED THROUGH VARIOUS CHEMICAL ETCHING PROCESSE FOR USE IN SMART COATINGS

Porous hollow glass microspheres have many uses, including encapsulation of active materials. In this paper a fast and facile method for fabricating porous hollow glass-microspheres was demonstrated by etching them using dilute hydrofluoric acid. Then, a highly reactive amine was infiltrated into the etched glass microspheres. Scanning electron microscopy was conducted for the hollow glass micr...

متن کامل

Preparation and In Vitro Evaluation of a Microballoon Delivery System for Theophylline

A multiple-unit oral floating system was prepared using the emulsification-solvent diffusion method to prolong the gastric emptying time of theophylline. For this purpose, theophylline, ethyl cellulose and dibutyl phthalate were dissolved in an ethanol/dichloromethane mixture, added to 0.1 M HCl containing NaCl (20%) or saturated theophylline and/or different concentrations of polysorbate 80 an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 7 Suppl 4  شماره 

صفحات  -

تاریخ انتشار 2010